# Enumerative Combinatorics Generating Functions 

Andrew Weinfeld

December 2018

## Basic Ideas

Sequence of finite sets $S_{0}, S_{1}, S_{2}, \ldots$
Want to determine or describe $f(i)=\# S_{i}$

- Closed form formulas
- Open form formulas
- Recurrences
- Estimates
- Generating functions


## Generating Functions

$$
f(i)=\# S_{i}
$$

## Definition

An ordinary generating function is a formal power series with complex coefficients

$$
\sum_{n \geq 0} f(n) x^{n}=\sum_{n \geq 0} \sum_{a \in S_{n}} x^{n} \quad \text { or } \quad=\sum_{n \geq 0} \sum_{a \in S_{n}} w(a) x^{n}
$$

Generating functions of the form $\sum_{n \geq 0} f(n) \frac{x^{n}}{B(n)}$ may be used.

## Examples

## Example

Say $\# S_{i}=1$ for all $i$. Then the generating function is

$$
1+x+x^{2}+\ldots=\frac{1}{1-x}
$$

- In the ring of formal power series over $\mathbb{C}$, there is only one power series that is the inverse of $(1-x)$.


## Example

A partition of $n$ is a weakly decreasing sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ such that $\sum_{i=1}^{k} \lambda_{k}=n$. Let $p(n)$ be the number of partitions of $n$. Then

$$
\sum_{n \geq 0} p(n) x^{n}=\left(1+x+x^{2}+\ldots\right)\left(1+x^{2}+x^{4}+\ldots\right) \ldots=\prod_{n \geq 1} \frac{1}{1-x^{n}}
$$

## Rational Generating Functions

## Definition

A rational generating function has the form

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomials with complex coefficients.

## Example

The generating function from the previous slide

$$
1+x+x^{2}+\ldots=\frac{1}{1-x}
$$

is a rational generating function.

## Recurrences

When do we have a rational generating function?

## Theorem

The following conditions are equivalent:

- $\sum_{n \geq 0} f(n) x^{n}$ is a rational generating function $P(x) / Q(x)$, $Q(x)=1+b_{1} x+\ldots+b_{d} x^{d}$.
- For fixed $b_{i}$ and $d$ and sufficiently large $n$, $f(n)+b_{1} f(n-1)+\ldots+b_{d} f(n-d)=0$.


## Proof.

$$
Q(x) \sum_{n \geq 0} f(n) x^{n}=\sum_{n \geq 0}\left(f(n)+b_{1} f(n-1)+\ldots+b_{d} f(n-d)\right) x^{n}=P(x)
$$

## Fibonacci Numbers

## Theorem

- $\sum_{n \geq 0} f(n) x^{n}$ is a rational generating function $P(x) / Q(x)$, $Q(x)=1+b_{1} x+\ldots+b_{d} x^{d}$.
- For fixed $b_{i}$ and $d$ and sufficiently large $n$, $f(n)+b_{1} f(n-1)+\ldots+b_{d} f(n-d)=0$.


## Example

$$
\begin{aligned}
& f(0)=0, f(1)=1, f(n)-f(n-1)-f(n-2)=0 \text { for } n \geq 2 \\
& \sum_{n \geq 0} f(n) x^{n}=x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+8 x^{6} \ldots \\
& Q(x)=1-x-x^{2} \text { and } Q(x) \sum_{n \geq 0} f(n) x^{n}=x
\end{aligned}
$$

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{x}{1-x-x^{2}}
$$

## Evaluation of Some Rational Generating Functions

## Lemma

$$
(1+x)^{j}=\sum_{n \geq 0} \frac{j(j-1) \ldots(j-n+1)}{n!} x^{n}
$$

for all $j \in \mathbb{C}$.

## Lemma

$$
\frac{\beta}{(1-\gamma x)^{j}}=\sum_{n \geq 0}\left(\frac{\beta(n+j-1)(n+j-2) \ldots(n+1)}{(j-1)!} \gamma^{n}\right) x^{n}
$$

for all positive integers $j$.

## Fundamental Property

## Theorem

Let $S(x)$ and $Q(x)$ be polynomials over $\mathbb{C}$. Then

$$
\frac{S(x)}{Q(x)}=R(x)+\frac{P(x)}{Q(x)}
$$

where the degree of $P(x)$ be less than the degree of $Q(x)$.

## Theorem

Let the degree of $P(x)$ be less than the degree of $Q(x)$. Then

$$
\frac{P(x)}{Q(x)}=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}} \frac{\beta_{i j}}{\left(1-\gamma_{i} x\right)^{j}}
$$

where $Q(x)=\prod_{i=1}^{k}\left(1-\gamma_{i} x\right)^{d_{i}}$

## Fundamental Property

$Q(x)=\prod_{i=1}^{k}\left(1-\gamma_{i} x\right)^{d_{i}}$ has degree $n$

## Proof.

Letting $P(x)$ vary, we can consider the vector spaces over $\mathbb{C}$

$$
\begin{aligned}
& V_{1}=\left\{f: \mathbb{N} \rightarrow \mathbb{C} \text { such that } \sum_{n \geq 0} f(n) x^{n}=\frac{P(x)}{Q(x)}, \operatorname{deg} P(x)<n\right\} \\
& V_{2}=\left\{f: \mathbb{N} \rightarrow \mathbb{C} \text { such that } \sum_{n \geq 0} f(n) x^{n}=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}} \frac{\beta_{i j}}{\left(1-\gamma_{i} x\right)^{j}}\right\}
\end{aligned}
$$

(1) $V_{2} \subseteq V_{1}$
(2) $\left\{x^{i} / Q(x) \mid 0 \leq i<n\right\}$ spans $V_{1}$
(3) $\left.\left\{1 /\left(1-\gamma_{i} x\right)^{j}\right) \mid 1 \leq i \leq k, 1 \leq j \leq d_{i}\right\}$ is linearly independent in $V_{2}$

## Fibonacci Numbers

## Example

$$
f(0)=0, f(1)=1, f(n)-f(n-1)-f(n-2)=0 \text { for } n \geq 2
$$

$$
\sum_{n \geq 0} f(n) x^{n}=x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+8 x^{6} \ldots=\frac{x}{1-x-x^{2}}
$$

$$
=\frac{x}{\left(1-\left(\frac{1+\sqrt{5}}{2}\right) x\right)\left(1-\left(\frac{1-\sqrt{5}}{2}\right) x\right)}=\frac{1 / \sqrt{5}}{1-\left(\frac{1+\sqrt{5}}{2}\right) x}+\frac{-1 / \sqrt{5}}{1-\left(\frac{1-\sqrt{5}}{2}\right) x}
$$

Thus,

$$
f(n)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

## Thank You

would like to thank

- My mentor, Aleksandra Utiralova
- The PRIMES program
- Sasha Shashkov
- My parents

